Home / Expert Answers / Calculus / 1-int-0-1-2-ln-5-e-x-a-sqrt-3-b-sqrt-3-1-c-sqrt-5-d-sqrt-5-1-2-the-graph-of-the-pa303

(Solved): (1) \int_0^((1)/(2)ln(5)) e^(x)= (A) \sqrt(3) B\sqrt(3)-1 C\sqrt(5) D\sqrt(5)-1 (2) The graph of the ...



(1) \int_0^((1)/(2)ln(5)) e^(x)= (A) \sqrt(3) B\sqrt(3)-1 C\sqrt(5) D\sqrt(5)-1 (2) The graph of the function f(x)=(lnx)/(x) has a relative maximum at x= (A) e Be^(2) (3) From the accompanying figure, the graph of y=f(x) is increasing on: A(-\infty ,+\infty ) B(-\infty ,0] C[0,+\infty ) D-1,1 (4) If f(x)=x^(5)+x^(3)+x, then (f^(-1))^(')(0)= A(1)/(3) B(1)/(9) (5) (d)/(dx)[tan^(-1)(x^(3))]= A(3x^(2))/(1+x^(6)) B(2x)/(1+x^(4)) C(x^(2))/(1+x^(6)) D(x)/(1+x^(4)) (6) sin[2cos^(-1)((3)/(5))]= A(\sqrt(3))/(2) B(24)/(25) C(\sqrt(3))/(4) D(24)/(5) (7) The domain of the function y=ln(x^(2)-4x+4) is: A(-\infty ,-2)\cup (2,+\infty ) B(-2,2) C(-\infty ,2)\cup (2,+\infty ) D(2,+\infty ) (8) The value of x such that 3^(x)=2^(x+1) is: A(ln(2))/(ln(3)-ln(2)) Bln((2)/(3)) Cln((3)/(2)) Dln(3)-ln(2) (9) \lim_(x->+\infty )(1+(9)/(x))^(5x)=:, Ae^(45) De^((5)/(9)) (10) Let F(x)=\int_0^x (sint)/(t^(2)+1)dt. Find F^(')(0); A\pi B(1)/(2) D


We have an Answer from Expert

View Expert Answer

Expert Answer


We have an Answer from Expert

Buy This Answer $5

Place Order

We Provide Services Across The Globe