(Solved): A linear system yields outputs \( y_{1}(t)=t e^{-t} \) and \( y_{2}(t)=0.5 e^{-t} \) for inputs \( ...
A linear system yields outputs \( y_{1}(t)=t e^{-t} \) and \( y_{2}(t)=0.5 e^{-t} \) for inputs \( x_{1}(t)=t \) and \( x_{2}(t)=u(t) \). respectively. What is the output for an input \( x(t)=2 u(t)+t \) ? A. none of the answers B. \( y(t)=t e^{-t}+2 e^{-t} \) C. \( y(t)=2 t e^{-t}+e^{-t} \) D. \( y(t)=t e^{-t}+e^{-t} \)