(Solved): answer a & c !! 3. (10 pts each) Let \( D=\{(t, y): t \in[0,1], y \in[0,1]\} \). Consider \[ f(t ...
answer a & c !!
3. (10 pts each) Let \( D=\{(t, y): t \in[0,1], y \in[0,1]\} \). Consider \[ f(t, y)=\frac{t}{1+y^{2}} . \] a. Prove that \( D \) is convex. b. Prove that \( f \) satisfies the Lipschitz condition on \( D \). c. Prove that the differential system \[ y^{\prime}(t)=\frac{t}{1+y^{2}}, \quad y(0)=1, \]