(Solved): answer a
\[ \left.r(t)=\left(2 t^{2}-5 t\right) \hat{i}+\left(6-t^{4}\right)\right\} \] Here \( { } ...
answer a
\[ \left.r(t)=\left(2 t^{2}-5 t\right) \hat{i}+\left(6-t^{4}\right)\right\} \] Here \( { }^{4} r \) " denotes position in units of meters, "t" denotes time in units of seconds. a. Calculate the instantaneous velocity vector \( \vec{w}(t) \), at \( t=2 \mathrm{~s} \). b. Calculate the instantaneous acceleration vector \( a(t) \), at \( t=2 \mathrm{~s} \). c. Calculate the average velocity vector \( \bar{v}_{\text {ave }} \) between the time interval \( t=0 \mathrm{~s} \) and \( t-2 \mathrm{~s} \). d. Calculate the average acceleration vector \( \overline{a_{m e f}} \) between the time interval \( t=0 \mathrm{~s} \) and \( \mathrm{t}=2 \mathrm{~s} \).