Consider the following LP: maxz=5x1+6x2+9x3+8x4\max z = 5x_1 + 6x_2 + 9x_3 + 8x_4maxz=5x1+6x2+9x3+8x4 s.t. {x1+2x2+3x3+x4≤5x1+x2+2x3+3x4≤3xi≥0,i=1,2,3,4\begin{cases} x_1 + 2x_2 + 3x_3 + x_4 \leq 5 \\ x_1 + x_2 + 2x_3 + 3x_4 \leq 3 \\ x_i \geq 0, \quad i = 1, 2, 3, 4 \end{cases}⎩⎨⎧x1+2x2+3x3+x4≤5x1+x2+2x3+3x4≤3xi≥0,i=1,2,3,4 (a) Solve the above LP via the Simplex Method. (30 points) (b) What is degeneracy and stalling in LP problems solved via the simplex method? In your solution to this LP did you find degeneracy or stalling? If so, describe when, if not, state no. (5 points)