Construct a
95%
confidence interval for
\mu _(1)-\mu _(2)
with the sample statistics for mean calorie content of two bakeries' specialty pies and confidence interval construction formula below. Assume the populations are approximately normal with equal variances. Confidence interval
(\bar{x} _(1)-\bar{x} _(2))-t_(c)hat(\sigma )\sqrt((1)/(n_(1))+(1)/(n_(2)))<\mu _(1)-\mu _(2)<(\bar{x} _(1)-\bar{x} _(2))+t_(c)hat(\sigma )\sqrt((1)/(n_(1))+(1)/(n_(2)))
when variances are \table[[Bakery A,Bakery B],[
\bar{x} _(1)=1898cal
,
\bar{x} _(2)=1601cal