Determine the covariance and correlation for the following joint probability distribution: Solution: E(X) = 1(1/8) +1(1/4) + 2(1/2) + 4(1/8) = 15/8 = 1.875 E(Y) = 3(1/8) + 4(1/4) + 5(1/2) + 6(1/8) = 37/8 = 4.625 V(X) = 12(3/8) + 22(1/2) + 42(1/8) - (15/8)2 = 0.8594 V(Y) = 32(1/8) + 42(1/4) + 52(1/2) + 62(1/8) - (37/8)2 = 0.7344 9.375=75/8= (1/8)]6[4+(1/2)]5[2+(1/4)]4[1+(1/8)]3[1=E(XY) ́ ́ ́ ́ ́ ́ ́ ́ 703125.0)625.4)(875.1(375.9)()()( =-=-= YEXEXYEXY s 8851.0 )7344.0)(8594.0(