(Solved): \[ f(x)=\frac{3 x(2-x)}{4} \mathrm{I}_{(0,2)}(x) \] where \( \mathbf{I}_{(a, b)}(x) \) is the indic ...
\[ f(x)=\frac{3 x(2-x)}{4} \mathrm{I}_{(0,2)}(x) \] where \( \mathbf{I}_{(a, b)}(x) \) is the indicator function defined on the interval \( (a, b) \). Define a new random variable as, \( Y=X / 2 \). Derive the probability density function of the random variable, \( Y \). Specify the range of the random variable.