Home / Expert Answers / Statistics and Probability / f-x-frac-3-x-2-x-4-mathrm-i-0-2-x-where-mathbf-i-a-b-x-is-the-indic-pa690

(Solved): \[ f(x)=\frac{3 x(2-x)}{4} \mathrm{I}_{(0,2)}(x) \] where \( \mathbf{I}_{(a, b)}(x) \) is the indic ...




\[
f(x)=\frac{3 x(2-x)}{4} \mathrm{I}_{(0,2)}(x)
\]
where \( \mathbf{I}_{(a, b)}(x) \) is the indicator function defined on t
\[ f(x)=\frac{3 x(2-x)}{4} \mathrm{I}_{(0,2)}(x) \] where \( \mathbf{I}_{(a, b)}(x) \) is the indicator function defined on the interval \( (a, b) \). Define a new random variable as, \( Y=X / 2 \). Derive the probability density function of the random variable, \( Y \). Specify the range of the random variable.


We have an Answer from Expert

View Expert Answer

Expert Answer


Given f(x)=3x(2?x)4I(0,2)(x) Where I(a,b)(x) is the indicator function defined on the interval (a,b). Define new random variable Y=X2
We have an Answer from Expert

Buy This Answer $5

Place Order

We Provide Services Across The Globe