Find the Maclaurin series of the function.
f(x)=ln(1-5x)
Choose the Maclaurin series.
ln(1-5x)=\sum_(n=1)^(\infty ) ((-1)^(n-1)5^(n)x^(n))/(n)
ln(1-5x)=-\sum_(n=1)^(\infty ) (5^(n)x^(n))/(5n)
ln(1-5x)=-\sum_(n=1)^(\infty ) (5^(n)x^(n))/(n)
ln(1-5x)=\sum_(n=1)^(\infty ) ((-1)^(n-1)x^(5n))/(5n)\infty for infinity, U for combining intervals, and an appropriate
type of parenthesis "(",")", "[","]" depending on whether the interval is open or closed. Enter (O)/() if the interval is empty. Express
numbers in exact form. Use symbolic notation and fractions where needed.