(Solved):
For two variables \( x, y \) that have means \( \mu_{x}, \mu_{y} \), the Covariance is defined as: ...
For two variables \( x, y \) that have means \( \mu_{x}, \mu_{y} \), the Covariance is defined as: 1. the expectation value of \( \left(x-\mu_{x}\right) \times\left(y-\mu_{y}\right) \) 2. the expectation value of \( \left(x-\mu_{x}\right)^{2} \times\left(y-\mu_{y}\right)^{2} \) 3. the expectation value of \( \left(x-\mu_{x}\right)^{2}+\left(y-\mu_{y}\right)^{2} \) 4. the expectation value of \( \left(x-\mu_{x}\right)+\left(y-\mu_{y}\right) \)