fy(x,y)=∂y∂f(x,y):1+x1sin(1+xy)1+xysin(1+xy)1+x1sin(1+xy)1+xysin(1+xy)fy(x,y)∣(0,w)=∂y∂f(x,y)∣∣(0,π)
Find f(m,v) and f(m,v) at the point (0,w) if f(m,v)=m(1+∞v) To find f(x,y)=con(1+xy) you need to find derivative by holding - constant vconstant Both x and y constant Neither ≈ nor y constant What is fx(x,y)=∂x∂f(x,y) : (1+x)21sin(1+zy)(1+x)2ysin(1+xy)(1+x)2ysin(1+xy)(1+x)21sin(1+xy)fs(x,y)∣(0,−π)Dx∂f(x,y)∣∣(θ,−1