Let
P=[[9,-4,-7]]
15,
vec(y)_(1)(t)=[[2e^(3t)+4e^(-t)]]
3e^(3t)+10e^(-t),vec(y)_(2)(t)=[[-4e^(3t)+2e^(-t)]]
-6e^(3t)+5e^(-t).
a. Show that
vec(y)_(1)(t)
is a solution to the system
vec(y)^(')=Pvec(y)
by evaluating derivatives and the matrix product
vec(y)_(1)^(')(t)=[[9,-4],[15,-7]]vec(y)_(1)(t)
Enter your answers in terms of the variable
t
.
[◻]=[[6e^(3t)-4e^(-t)],[9e^(3t)-10e^(-t)]]