Home / Expert Answers / Advanced Math / m-i-m-j-m-i-j-left-m-i-right-j-m-i-cdot-j-left-m-i-right-cd-pa666

(Solved): \( m^{i}: m^{j}=m^{i+j} \) \( \left(m^{i}\right)^{j}=m^{(i \cdot j)} \) ) \( \left(m^{i}\right) \cd ...




\( m^{i}: m^{j}=m^{i+j} \)
\( \left(m^{i}\right)^{j}=m^{(i \cdot j)} \)
) \( \left(m^{i}\right) \cdot(n i)=(m \cdot n)^{i} \)
\( m^{i}: m^{j}=m^{i+j} \) \( \left(m^{i}\right)^{j}=m^{(i \cdot j)} \) ) \( \left(m^{i}\right) \cdot(n i)=(m \cdot n)^{i} \)


We have an Answer from Expert

View Expert Answer

Expert Answer


(i) mi.mj=mi+j Prove Taking log of Both We get log?(mi+j)=log?(mi.mj)(i+j)log?m=log?(mi)+log?(mj)ilog?m+jlog?m=ilog?m+jlog?m Proved
We have an Answer from Expert

Buy This Answer $5

Place Order

We Provide Services Across The Globe