(Solved):
3. For any set \( A, B \) define the symmetric sum \( A \oplus B \) to be the set \( A \cu ...
3. For any set \( A, B \) define the symmetric sum \( A \oplus B \) to be the set \( A \cup B-(A \cap B) \). Prove that: (a) \( A \oplus B=B \oplus A \) (b) \( A \oplus B=\varnothing, \varnothing \) is empty set 4. Show that the sets \( \mathbb{Z} \) and \( \mathbb{Z}^{+} \)have the same cardinality.