Home / Expert Answers / Advanced Math / nbsp-nbsp-nbsp-1-the-group-of-complex-matrices-in-gl-2n-mathbb-c-that-leaves-invariant-the-pa510

(Solved):     1. The group of complex matrices in $GL(2n,\mathbb{C})$ that leaves invariant the ...



    1. The group of complex matrices in $GL(2n,\mathbb{C})$ that leaves invariant the anti-symmetric form 
    \begin{equation}
        \sum_{i}^{n}z_i\tilde{w}_i-\tilde{z}_iw_i=\sum_{i}^{n}z_i'\tilde{w}'_i-\tilde{z}'_iw'_i
    \end{equation}
    of the complex vectors $\vec{z} = (z_1,...,z_n,\tilde{z}_1,...,\tilde{z}_n)$ y $\vec{w} = (w_1,...,w_n,\tilde{w}_1,...,\tilde{w}_n)$ form the symplectic  complex group $Sp(2n,\mathbb{C})$ of $2n(2n+1)$ parameters. What is the form of the metric $g$ and what condition must the transformation matrices A satisfy? If the matrices are real, the group is the    real symplectic group $Sp(2n, R)$ of $n(2n + 1)$ parameters. If the matrices are unitary, the group is the unitary symplectic group $Sp(2n)$ also with $n(2n + 1)$ parameters.
    \begin{itemize}
        \item Show that there is a one to one correspondence between the unitary symplectic group $ Sp(2) $ and $ SU(2) $, that is, that they are isomorphic.
        \item Consider the group of unitary symplectic transformations in $ 2n $ dimensions $ Sp(2) $. If the infinitesimal generators $ X_k $ are expressed in terms of $ n \times n $ sub-matrices, $X_{ij}$ as
        \begin{equation}
            X_k=
            \begin{pmatrix}
                X_{11} & X_{12} \\
                X_{21} & X_{22} 
            \end{pmatrix}
        \end{equation}
        i) What conditions must the $ X_{ij} $ matrices satisfy? 
        ii) Show that there are $ r = n(2n+1) $ infinitesimal generators.
        \item A generic form of the generators in terms of the $ E_{ij} $ matrices is given by
        \begin{equation}
            B_{1j}=
            \begin{pmatrix}
                E_{ij} & 0 \\
                0 & -E_{ji}
            \end{pmatrix},\,\,\,\,\,\,
            C_{ij}=
            \begin{pmatrix}
                0 & E_{ij}+E_{ji} \\
                0 & 0 
            \end{pmatrix},\,\,\,\,\,\,
            D_{ij}=
            \begin{pmatrix}
                0 & 0 \\
                E_{ij}+E_{ji} & 0 
            \end{pmatrix},
        \end{equation}
    What are the structure constants?
    \item Show that the quadratic Casimir operator is given by
    \begin{equation}
        C_{2Sp(2n)}=\sum_{ij}B_{ij}B_{ji}+\frac{1}{2}\sum_{ij}(C_{ij}D_{ji}+D_{ij}C_{ji}).
    \end{equation}
    \end{itemize}



We have an Answer from Expert

View Expert Answer

Expert Answer


1. The metric $g$ is the anti-symmetric form \begin{equation} g = \sum_{i}^{n}z_i\tilde{w}_i-\tilde{z}_iw_i \end{equation} and the transformation matr
We have an Answer from Expert

Buy This Answer $5

Place Order

We Provide Services Across The Globe