Home / Expert Answers / Electrical Engineering / problem-1-fourier-transform-of-the-sin-signal-obtain-the-fourier-transform-x-of-signal-1-xt-pa922

(Solved): Problem 1. Fourier Transform of the Sin Signal Obtain the Fourier Transform X ( ) of signal 1 xt ...



Problem 1. Fourier Transform of the Sin Signal Obtain the Fourier Transform X ( ) ? of signal 1 xt t ( ) sin = ? by two different approaches 1a) 20 points: Using the Fourier Transform of the complex exponential { }1 1 2( ) j t F e ? = ? ?? ? ? 1b) 20 points: Using the Time Shift Theorem { } { } 0 0 ( ) () j t F xt t F xt e? ? ? = and the knowledge that: • { } 1 11 F t cos ( ) ( ) ? ?? ? ? ?? ? ? = ++ ? • sin cos( / 2) cos ( / 2 ) ? ?? ? ?? 1 1 tt t = ?= ? [ 1 1 ] 1c) 10 points: Obtain the expression for magnitude X ( ) ? and angle?X ( ) ? . Sketch X ( ) ? ?X ( ) ? . Discuss the significance of these plots in terms of harmonics.

 

Problem 1. Fourier Transform of the Sin Signal
Obtain the Fourier Transform \( X(\omega) \) of signal \( x(t)=\sin \omega_{1}

Problem 1. Fourier Transform of the Sin Signal Obtain the Fourier Transform \( X(\omega) \) of signal \( x(t)=\sin \omega_{1} t \) by two different approaches 1a) 20 points: Using the Fourier Transform of the complex exponential \( F\left\{e^{j \omega_{1} t}\right\}=2 \pi \delta\left(\omega-\omega_{1}\right) \) 1b) 20 points: Using the Time Shift Theorem \( F\left\{x\left(t-t_{0}\right)\right\}=F\{x(t)\} e^{-j o t_{0}} \) and the knowledge that: - \( \quad F\left\{\cos \omega_{1} t\right\}=\pi \delta\left(\omega+\omega_{1}\right)+\pi \delta\left(\omega-\omega_{1}\right) \) - \( \sin \omega_{1} t=\cos \left(\omega_{1} t-\pi / 2\right)=\cos \left[\omega_{1}\left(t-\pi / 2 \omega_{1}\right)\right] \) 1c) 10 points: Obtain the expression for magnitude \( |X(\omega)| \) and angle \( \angle X(\omega) \). Sketch \( |X(\omega)| \) \( \angle X(\omega) \). Discuss the significance of these plots in terms of harmonics.


We have an Answer from Expert

View Expert Answer

Expert Answer


We have an Answer from Expert

Buy This Answer $5

Place Order

We Provide Services Across The Globe