Problem 1. Given the first order theory of the Boolean
Algebra as follows: Domain : {0, 1},
Functions : ”OR”:x + y, ”AND”: x.y, ”NEG”:x,
Axioms:
1 x+0=x 2 x.1=x
3 x+y=y+x 4 x.y=y.x
5 x.(y+z)=x.y+x.z 6 x+(y.z)=(x+y).(x+z) 7 x+x=1
8 x.x=0
Prove that x.0 = 0