Question 1. (12 Marks) For each of the following, determine whether it is valid or invalid. If valid, then give proof using proper, well-defined set-theoretic notation. If invalid, then give a counterexample. (a)
(A\cap B)\cup (C\cap D)=(A\cap D)\cup (C\cap B)(b)
A-(B\cup C)=(A-B)\cap (A-C)(c)
A\cap CsubeA->(C-A)\cap (B-A)is empty (d)
(A\cup B)-(A\cap B)=A->Bis empty