Questions #7 - 9: Use separation of variables to obtain the general solution and particular solution to the differential equation
x*cosx=(2y+e^(3y))*y^(')with the initial condition
y(0)=0. 7. What is the correct separation of variables? A.
(2y+e^(3y))dx=x*cosxdyD.
(dx)/((2y+e^(3y)))=(dy)/(x*cosx)B.
(dx)/(x*cosx)=(dy)/((2y+e^(3y)))E.
(x-2y)(dy)/(dx)=(e^(3y)-cosx)(dx)/(dy)C.
x*cosxdx=(2y+e^(3y))dy8. What is the general solution of the differential equation
x*cosx=(2y+e^(3y))*y^(')? A.
x*sinx+cosx=y^(2)+(1)/(3)e^(3y)+CD.
3x^(2)*cosx=(1)/(3)y^(2)+e^(3y)+CB.
(1)/(2)x^(2)*cosx=y^(2)+3e^(3y)+CE.
-x*sinx=y^(2)+(1)/(3)e^(3y)+CC.
-3x^(2)*sinx=(1)/(3)y^(2)+e^(3y)+C9. What is the particular solution of the differential equation
x*cosx=(2y+e^(3y))*y^(')with initial condition
y(0)=0? A.
-3x^(2)*sinx=(1)/(3)y^(2)+e^(3y)+2D.
x*sinx+cosx=y^(2)+(1)/(3)e^(3y)+(2)/(3)B.
-x*sinx=y^(2)+(1)/(3)e^(3y)+3E.
(1)/(2)x^(2)*cosx=y^(2)+3e^(3y)-1C.
3x^(2)*cosx=(1)/(3)y^(2)+e^(3y)