Home / Expert Answers / Advanced Math / show-that-the-given-functions-are-inverse-functions-of-each-other-then-display-the-graphs-of-each-pa306

(Solved): Show that the given functions are inverse functions of each other. Then display the graphs of each ...




Show that the given functions are inverse functions of each other. Then display the graphs of each function and the line \( y
\( \frac{y}{2}=\log _{10} x \)
\( \frac{x}{2}=10^{x} \)
\( \frac{x}{2}=\log _{10} y \)
\( \frac{x}{2}=\log _{y} 10 \)
\( y=\l
\( y=10^{x / 2} \rightarrow \frac{y}{2}=\log _{10} x \)
Show that the given functions are inverse functions of each other. Then display the graphs of each function and the line \( y \) s s on a graprim caicaiser wa negn thut exch is the image of the other across \( y=x \). \[ y=10^{2 / 2} \text { and } y=2 \log _{10} x \] Transform the function \( y=10^{x / 2} \) to show that if is the inverse of \( y=210 \mathrm{~g} 10^{x} \). \[ \begin{aligned} y=10^{x / 2} \rightarrow \\ \frac{x}{2}-y^{10} \\ \frac{x}{2}=10^{y} \end{aligned} \] \[ y=10^{\frac{y}{2}} \] \( \frac{y}{2}=\log _{10} x \) \( \frac{x}{2}=10^{x} \) \( \frac{x}{2}=\log _{10} y \) \( \frac{x}{2}=\log _{y} 10 \) \( y=\log _{10} \frac{x}{2} \) \( y=10^{x / 2} \rightarrow \frac{y}{2}=\log _{10} x \)


We have an Answer from Expert

View Expert Answer

Expert Answer


Solution: given function y=10x2 find it's in
We have an Answer from Expert

Buy This Answer $5

Place Order

We Provide Services Across The Globe