Home / Expert Answers / Calculus / sketch-the-graph-and-show-all-local-extrema-and-inflection-points-absolute-maxima-sqrt-2-pa797

(Solved): Sketch the graph and show all local extrema and inflection points. Absolute maxima: \( (-\sqrt{2},- ...




Sketch the graph and show all local extrema and inflection points.
Absolute maxima: \( (-\sqrt{2},-1),(\sqrt{2},-1) \)
Local
Inflection point: \( \left(-\sqrt{\frac{2}{3}}, \frac{25}{9}\right),\left(\sqrt{\frac{2}{3}}, \frac{25}{9}\right) \)
Absolute
Absolute maxima: \( (-\sqrt{2},-1),(\sqrt{2},-1) \)
Inflection points: \( \left(-\sqrt{\frac{2}{3}}, \frac{1}{9}\right),\left
Sketch the graph and show all local extrema and inflection points. Absolute maxima: \( (-\sqrt{2},-1),(\sqrt{2},-1) \) Local minimum: \( (0,-5) \) No inflection points Inflection point: \( \left(-\sqrt{\frac{2}{3}}, \frac{25}{9}\right),\left(\sqrt{\frac{2}{3}}, \frac{25}{9}\right) \) Absolute maxima: \( (-\sqrt{2},-1),(\sqrt{2},-1) \) Inflection points: \( \left(-\sqrt{\frac{2}{3}}, \frac{1}{9}\right),\left(\sqrt{\frac{2}{3}}, \frac{1}{9}\right) \) Absolute maxima: \( (-\sqrt{2},-1),(\sqrt{2},-1) \) Inflection points: \( \left(-\sqrt{\frac{2}{3}}, \frac{1}{9}\right),\left(\sqrt{\frac{2}{3}}, \frac{1}{9}\right) \) Absolute maxima: \( (-\sqrt{2},-1),(\sqrt{2},-1) \) Local minimum: \( (0,-5) \) Inflection points: \( \left(-\sqrt{\frac{2}{3}},-\frac{25}{9}\right)\left(\sqrt{\frac{2}{3}},-\frac{25}{9}\right) \)


We have an Answer from Expert

View Expert Answer

Expert Answer


Consider the function y=?x4+4x2?5. Solve y?=0. ?4x
We have an Answer from Expert

Buy This Answer $5

Place Order

We Provide Services Across The Globe