Home / Expert Answers / Electrical Engineering / the-answer-is-shown-below-please-show-all-the-missing-work-using-the-same-method-solve-t-pa600

(Solved): The answer is shown below please show all the missing work using the same method. Solve t ...



Solve the following equations using both the direct method and the convolution method.
(a) \( \left(D^{2}+7 D+12\right) y(t)=

a)
\[
\begin{array}{l}
\left(D^{2}+7 D+12\right) y(t)=e^{t} \zeta(t) \\
y(0)=\left.\frac{d y(t)}{d t}\right|_{t=0}=0 \\
L_{A}

\[
\begin{array}{l}
\left.\frac{d y(t)}{d t}\right|_{t=0}=\frac{1}{20}-4 c_{2}-3 c_{3}=0 \rightarrow\left\{\begin{array}{c}
c

b)
The first part is identical to problem \( 3.6 \) (b), from which
\[
y(t)=(t-1) e^{-t}+e^{-2 t}, t \geq 0
\]
By convolution

\( =t e^{-t}-e^{-t}+e^{-2 t}, t \geq 0 \)

The answer is shown below please show all the missing work using the same method.

Solve the following equations using both the direct method and the convolution method. (a) \( \left(D^{2}+7 D+12\right) y(t)=e^{t} \xi(t), \quad y(0)=\left.\frac{d y(t)}{d t}\right|_{t=0}=0 \) (b) \( \left(D^{2}+3 D+2\right) y(t)=e^{-t} \xi(t), \quad y(0)=\left.\frac{d y(t)}{d t}\right|_{t=0}=0 \) a) \[ \begin{array}{l} \left(D^{2}+7 D+12\right) y(t)=e^{t} \zeta(t) \\ y(0)=\left.\frac{d y(t)}{d t}\right|_{t=0}=0 \\ L_{A}=D-1 \\ (D-1)\left(D^{2}+7 D+12\right) y(t)=0 \\ (r-1)\left(r^{2}+7 r+12\right)=0 \rightarrow r_{1}=-3, r_{2}=-4, r_{3}=1 \\ y(t)=c_{1} e^{t}+c_{2} e^{-4 t}+c_{3} e^{-3 t} \\ \left(D^{2}+7 D+12\right) y(t)=20 c_{1} e^{t}=e^{t} \rightarrow c_{1}=\frac{1}{20} \\ y(0)=\frac{1}{20}+c_{2}+c_{3}=0 \end{array} \] \[ \begin{array}{l} \left.\frac{d y(t)}{d t}\right|_{t=0}=\frac{1}{20}-4 c_{2}-3 c_{3}=0 \rightarrow\left\{\begin{array}{c} c_{2}=\frac{1}{5} \\ c_{3}=-\frac{1}{4} \end{array}\right. \\ y(t)=\frac{1}{20} e^{t}+\frac{1}{5} e^{-4 t}-\frac{1}{4} e^{-3 t} \end{array} \] By convolution, from \( 3.8 \) a, we have: \[ h(t)=\left(e^{-3 t}-e^{-4 t}\right) \zeta(t) \] Thus: \[ \begin{aligned} y(t) &=\int_{0}^{t}\left(e^{-3 \tau}-e^{-4 \tau}\right) e^{t-\tau} d \tau \\ &=e^{t} \frac{e^{-4 t}-1}{-4}-e^{t} \frac{e^{-5 t}-1}{-5} \\ &=\frac{1}{20} e^{t}-\frac{1}{4} e^{-3 t}+\frac{1}{5} e^{-4 t}, t \geq 0 \end{aligned} \] b) The first part is identical to problem \( 3.6 \) (b), from which \[ y(t)=(t-1) e^{-t}+e^{-2 t}, t \geq 0 \] By convolution, we have: \[ \begin{array}{l} \left(r^{2}+3 r+2\right)=0 \rightarrow r_{1}=-1, r_{2}=-2 \\ h(t)=c_{1} e^{-t}+c_{2} e^{-2 t} \\ h(0)=c_{1}+c_{2}=0 \\ \left.\frac{d h(t)}{d t}\right|_{t=0}=-c_{1}-2 c_{2}=1 \rightarrow\left\{\begin{array}{c} c_{1}=1 \\ c_{2}=-1 \end{array}\right. \\ h(t)=\left(e^{-t}-e^{-2 t}\right) \zeta(t) \end{array} \] Thus: \[ \begin{aligned} y(t) &=h(t) * u(t) \\ &=\int_{0}^{t}\left(e^{-\tau}-e^{-2 \tau}\right) e^{-(t-\tau)} d \tau \\ &=e^{-t}\left\{\int_{0}^{t} 1 d \tau-\int_{0}^{t} e^{-\tau} d \tau\right\} \\ &=e^{-t}\left\{t-\frac{e^{-t}-1}{-1}\right\} \end{aligned} \] \( =t e^{-t}-e^{-t}+e^{-2 t}, t \geq 0 \)


We have an Answer from Expert

View Expert Answer

Expert Answer


We have an Answer from Expert

Buy This Answer $5

Place Order

We Provide Services Across The Globe