Home
Expert Answers
Place Order
How It Works
About Us
Contact Us
Sign In / Sign Up
Sign In
Sign Up
Home
/
Expert Answers
/
Electrical Engineering
/ the-answer-is-shown-below-please-show-all-the-missing-work-using-the-same-method-solve-t-pa600
(Solved): The answer is shown below please show all the missing work using the same method. Solve t ...
The answer is shown below please show all the missing work using the same method.
Solve the following equations using both the direct method and the convolution method. (a) \( \left(D^{2}+7 D+12\right) y(t)=e^{t} \xi(t), \quad y(0)=\left.\frac{d y(t)}{d t}\right|_{t=0}=0 \) (b) \( \left(D^{2}+3 D+2\right) y(t)=e^{-t} \xi(t), \quad y(0)=\left.\frac{d y(t)}{d t}\right|_{t=0}=0 \) a) \[ \begin{array}{l} \left(D^{2}+7 D+12\right) y(t)=e^{t} \zeta(t) \\ y(0)=\left.\frac{d y(t)}{d t}\right|_{t=0}=0 \\ L_{A}=D-1 \\ (D-1)\left(D^{2}+7 D+12\right) y(t)=0 \\ (r-1)\left(r^{2}+7 r+12\right)=0 \rightarrow r_{1}=-3, r_{2}=-4, r_{3}=1 \\ y(t)=c_{1} e^{t}+c_{2} e^{-4 t}+c_{3} e^{-3 t} \\ \left(D^{2}+7 D+12\right) y(t)=20 c_{1} e^{t}=e^{t} \rightarrow c_{1}=\frac{1}{20} \\ y(0)=\frac{1}{20}+c_{2}+c_{3}=0 \end{array} \] \[ \begin{array}{l} \left.\frac{d y(t)}{d t}\right|_{t=0}=\frac{1}{20}-4 c_{2}-3 c_{3}=0 \rightarrow\left\{\begin{array}{c} c_{2}=\frac{1}{5} \\ c_{3}=-\frac{1}{4} \end{array}\right. \\ y(t)=\frac{1}{20} e^{t}+\frac{1}{5} e^{-4 t}-\frac{1}{4} e^{-3 t} \end{array} \] By convolution, from \( 3.8 \) a, we have: \[ h(t)=\left(e^{-3 t}-e^{-4 t}\right) \zeta(t) \] Thus: \[ \begin{aligned} y(t) &=\int_{0}^{t}\left(e^{-3 \tau}-e^{-4 \tau}\right) e^{t-\tau} d \tau \\ &=e^{t} \frac{e^{-4 t}-1}{-4}-e^{t} \frac{e^{-5 t}-1}{-5} \\ &=\frac{1}{20} e^{t}-\frac{1}{4} e^{-3 t}+\frac{1}{5} e^{-4 t}, t \geq 0 \end{aligned} \] b) The first part is identical to problem \( 3.6 \) (b), from which \[ y(t)=(t-1) e^{-t}+e^{-2 t}, t \geq 0 \] By convolution, we have: \[ \begin{array}{l} \left(r^{2}+3 r+2\right)=0 \rightarrow r_{1}=-1, r_{2}=-2 \\ h(t)=c_{1} e^{-t}+c_{2} e^{-2 t} \\ h(0)=c_{1}+c_{2}=0 \\ \left.\frac{d h(t)}{d t}\right|_{t=0}=-c_{1}-2 c_{2}=1 \rightarrow\left\{\begin{array}{c} c_{1}=1 \\ c_{2}=-1 \end{array}\right. \\ h(t)=\left(e^{-t}-e^{-2 t}\right) \zeta(t) \end{array} \] Thus: \[ \begin{aligned} y(t) &=h(t) * u(t) \\ &=\int_{0}^{t}\left(e^{-\tau}-e^{-2 \tau}\right) e^{-(t-\tau)} d \tau \\ &=e^{-t}\left\{\int_{0}^{t} 1 d \tau-\int_{0}^{t} e^{-\tau} d \tau\right\} \\ &=e^{-t}\left\{t-\frac{e^{-t}-1}{-1}\right\} \end{aligned} \] \( =t e^{-t}-e^{-t}+e^{-2 t}, t \geq 0 \)
We have an Answer from Expert
View Expert Answer
Expert Answer
We have an Answer from Expert
Buy This Answer $5
Place Order
We Provide Services Across The Globe
Order Now
Go To Answered Questions