The determinant of a matrix and the determinant of the row equivalent matrix of the
matrix (in echelon form) are same. Reduce the following matrices into echelon form
and then find the determinant of the matrix
(i) A=([2,1,4],[-1,6,-5],[3,3,-2])
(ii) B=([1,1,2],[1,-2,3],[2,-3,-1]) (iii) C=([3,3,1],[0,4,2],[0,0,5])
(iv) D=([1,-4,3,2],[-1,6,3,2],[2,3,-8,1],[1,-2,2,-4])
(v) E=([1,2,-3,-2],[1,-3,3,2],[2,3,8,1],[2,-2,2,4])