Home / Expert Answers / Calculus / the-value-of-the-limit-lim-n-rightarrow-infty-sum-i-1-n-frac-4-n-sqrt-4-frac-4-pa596

(Solved): The value of the limit \[ \lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{4}{n} \sqrt{4+\frac{4 ...



The value of the limit
\[
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{4}{n} \sqrt{4+\frac{4 i}{n}}
\]
is equal to the a

The value of the limit \[ \lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{4}{n} \sqrt{4+\frac{4 i}{n}} \] is equal to the area below the graph of a function \( f(x) \) on an interval \( [A, B] \). Find \( f, A \), and \( B \). (Do not evaluate the limit.) \[ f(x)= \] \( A= \) (use \( A=0 \) ) \( B= \) \( \triangle \)


We have an Answer from Expert

View Expert Answer

Expert Answer


Dear Student
We have an Answer from Expert

Buy This Answer $5

Place Order

We Provide Services Across The Globe